
Lecture #10 
RTOS Events: Semaphores 

Instructor:  
Dr. Ahmad El-Banna 
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Intro. 

• Multiple concurrent threads of execution within an 
application must be able to synchronize their execution and 
coordinate mutually exclusive access to shared resources.  

 

• To address these requirements, RTOS kernels provide a 
semaphore object and associated semaphore management 
services. 
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Defining Semaphores 

• A semaphore (sometimes called a semaphore token) is a kernel 
object that one or more threads of execution can acquire or 
release for the purposes of synchronization or mutual exclusion.  

• When a semaphore is first created, the kernel assigns to it an 
associated semaphore control block (SCB), a unique ID, a value 
(binary or a count), and a task-waiting list. 
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Defining Semaphores.. 

• A semaphore is like a key that allows a task to carry out some 
operation or to access a resource.  

• The kernel tracks the number of times a semaphore has been 
acquired or released by maintaining a token count, which is initialized 
to a value when the semaphore is created.  

• As a task acquires the semaphore, the token count is decremented; 
as a task releases the semaphore, the count is incremented.  

• If the token count reaches 0, the semaphore has no tokens left.  
• A requesting task, therefore, cannot acquire the semaphore, and the 

task blocks if it chooses to wait for the semaphore to become 
available. 

• The task-waiting list tracks all tasks blocked while waiting on an 
unavailable semaphore.  

• These blocked tasks are kept in the task-waiting list in either first 
in/first out (FIFO) order or highest priority first order.  

• When an unavailable semaphore becomes available, the kernel allows 
the first task in the task-waiting list to acquire it.  5 
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Types of Semaphores 

• A kernel can support many different types of semaphores, 
including  

• binary,  

• counting, and  

• mutual-exclusion (mutex) semaphores. 
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Binary Semaphores 

• A binary semaphore can have a value of either 0 or 1.  

• When a binary semaphore’s value is 0, the semaphore is 
considered unavailable (or empty); when the value is 1, the 
binary semaphore is considered available (or full ).  
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Counting Semaphores  

• A counting semaphore uses a count to allow it to be acquired 
or released multiple times. 

• As with binary semaphores, counting semaphores are global 
resources that can be shared by all tasks that need them.  
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Mutual Exclusion (Mutex) Semaphores  

• A mutual exclusion (mutex) semaphore is a special binary 
semaphore that supports ownership, recursive access, task 
deletion safety, and one or more protocols for avoiding 
problems inherent to mutual exclusion. 
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Mutex Semaphores 

• As opposed to the available and unavailable states in binary and 
counting semaphores, the states of a mutex are unlocked or 
locked (0 or 1, respectively).  

• A mutex is initially created in the unlocked state, in which it can be 
acquired by a task. After being acquired, the mutex moves to the 
locked state.  

• Conversely, when the task releases the mutex, the mutex returns 
to the unlocked state. Some kernels might use the terms lock and 
unlock for a mutex instead of acquire and release. 

• Depending on the implementation, a mutex can support 
additional features not found in binary or counting semaphores.  

• These key differentiating features include ownership, recursive 
locking, task deletion safety, and priority inversion avoidance 
protocols.  
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Mutex Ownership 

• Ownership of a mutex is gained when a task first locks the 
mutex by acquiring it.  

• Conversely, a task loses ownership of the mutex when it 
unlocks it by releasing it.  

• When a task owns the mutex, it is not possible for any other 
task to lock or unlock that mutex.  

• Contrast this concept with the binary semaphore, which can 
be released by any task, even a task that did not originally 
acquire the semaphore.  

 

11 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



Recursive Locking 

• Many mutex implementations also support recursive 
locking, which allows the task that owns the mutex to 
acquire it multiple times in the locked state.  

• Depending on the implementation, recursion within a mutex 
can be automatically built into the mutex, or it might need 
to be enabled explicitly when the mutex is first created.  

• The mutex with recursive locking is called a recursive mutex .  

• This type of mutex is most useful when a task requiring 
exclusive access to a shared resource calls one or more 
routines that also require access to the same resource. 

• A recursive mutex allows nested attempts to lock the mutex 
to succeed, rather than cause deadlock , which is a condition 
in which two or more tasks are blocked and are waiting on 
mutually locked resources. 
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Task Deletion Safety  

• Some mutex implementations also have built-in task 
deletion safety.  

• Premature task deletion is avoided by using task deletion 
locks when a task locks and unlocks a mutex.  

• Enabling this capability within a mutex ensures that while a 
task owns the mutex, the task cannot be deleted.  

• Typically protection from premature deletion is enabled by 
setting the appropriate initialization options when creating 
the mutex.  
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Priority Inversion Avoidance 

• Priority inversion commonly happens in poorly designed 
real-time embedded applications.  

• Priority inversion occurs when a higher priority task is 
blocked and is waiting for a resource being used by a lower 
priority task, which has itself been preempted by an 
unrelated medium-priority task.  

• In this situation, the higher priority task’s priority level has 
effectively been inverted to the lower priority task’s level. 

 

• Enabling certain protocols that are typically built into 
mutexes can help avoid priority inversion.  
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Priority Inversion Avoidance.. 

• Two common protocols used for avoiding priority inversion 
include:  

• priority inheritance protocol—ensures that the priority level of 
the lower priority task that has acquired the mutex is raised to 
that of the higher priority task that has requested the mutex 
when inversion happens. The priority of the raised task is lowered 
to its original value after the task releases the mutex that the 
higher priority task requires.  

• ceiling priority protocol—ensures that the priority level of the 
task that acquires the mutex is automatically set to the highest 
priority of all possible tasks that might request that mutex when it 
is first acquired until it is released.  

• When the mutex is released, the priority of the task is lowered to 
its original value.  

• Chapter 16 discusses priority inversion and both the priority 
inheritance and ceiling priority protocols in more detail.  
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Typical Semaphore Operations  

• Typical operations that developers might want to perform 
with the semaphores in an application include:  

 

• creating and deleting semaphores 

• acquiring and releasing semaphores 

• clearing a semaphore’s task-waiting list 

• getting semaphore information. 
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Creating and Deleting Semaphores  

• Several things must be considered when creating and 
deleting semaphores.  

• If a kernel supports different types of semaphores, different 
calls might be used for creating binary, counting, and mutex 
semaphores, as follows:  

• Binary: specify the initial semaphore state and the task-waiting 
order.  

• Counting: specify the initial semaphore count and the task-
waiting order.  

• Mutex: specify the task-waiting order and enable task deletion 
safety, recursion, and priority-inversion avoidance protocols, if 
supported.  
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Acquiring and Releasing Semaphores 

• The operations for acquiring and releasing a semaphore might 
have different names, depending on the kernel: for example, take 
and give , sm_p and sm_v , pend and post , and lock and unlock . 
Regardless of the name, they all effectively acquire and release 
semaphores.  

• Tasks typically make a request to acquire a semaphore in one of 
the following ways:  

• Wait forever—task remains blocked until it is able to acquire a 
semaphore.  

• Wait with a timeout—task remains blocked until it is able to 
acquire a semaphore or until a set interval of time, called the 
timeout interval , passes. At this point, the task is removed from 
the semaphore’s task-waiting list and put in either the ready state 
or the running state.  

• Do not wait—task makes a request to acquire a semaphore token, 
but, if one is not available, the task does not block.  
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 Clearing Semaphore Task-Waiting Lists 

• To clear all tasks waiting on a semaphore task-waiting list, some 
kernels support a flush operation. 

• The flush operation is useful for broadcast signaling to a group of 
tasks.  

• For example, a developer might design multiple tasks to complete 
certain activities first and then block while trying to acquire a 
common semaphore that is made unavailable.  

• After the last task finishes doing what it needs to, the task can 
execute a semaphore flush operation on the common semaphore.  

• This operation frees all tasks waiting in the semaphore’s task 
waiting list.  

• The synchronization scenario just described is also called thread 
rendezvous, when multiple tasks’ executions need to meet at 
some point in time to synchronize execution control. 
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Getting Semaphore Information  

• At some point in the application design, developers need to 
obtain semaphore information to perform monitoring or 
debugging. 

• These operations are relatively straightforward but should 
be used judiciously, as the semaphore information might be 
dynamic at the time it is requested. 
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Typical Semaphore Use  

• Semaphores are useful either for synchronizing execution of 
multiple tasks or for coordinating access to a shared 
resource.  

• The following examples illustrate using different types of 
semaphores to address common synchronization design 
requirements effectively, as listed:  

• wait-and-signal synchronization,  

• multiple-task wait-and-signal synchronization,  

• credit-tracking synchronization,  

• single shared-resource-access synchronization,  

• recursive shared-resource-access synchronization, and  

• multiple shared-resource-access synchronization. 
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Wait-and-Signal Synchronization  

• Two tasks can communicate for the purpose of 
synchronization without exchanging data.  

• For example, a binary semaphore can be used between two 
tasks to coordinate the transfer of execution control. 
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Wait-and-Signal Synchronization .. 
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Multiple-Task Wait-and-Signal Synchronization 
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Credit-Tracking Synchronization 

• Sometimes the rate at which the signaling task executes is 
higher than that of the signaled task.  

• In this case, a mechanism is needed to count each signaling 
occurrence.  

• The counting semaphore provides just this facility.  

• With a counting semaphore, the signaling task can continue 
to execute and increment a count at its own pace, while the 
wait task, when unblocked, executes at its own pace. 
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Credit-Tracking Synchronization.. 
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Single Shared-Resource-Access 
Synchronization 

• One of the more common uses of semaphores is to provide for mutually 
exclusive access to a shared resource.  

• A shared resource might be a memory location, a data structure, or an I/O 
device-essentially anything that might have to be shared between two or 
more concurrent threads of execution.  

• A semaphore can be used to serialize access to a shared resource 
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Recursive Shared-Resource-Access 
Synchronization 

• Sometimes a developer might want a task to access a 
shared resource recursively.  

• This situation might exist if tAccessTask calls Routine A that 
calls Routine B, and all three need access to the same 
shared resource. 
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Recursive Shared-Resource-Access 
Synchronization .. 
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Multiple Shared-Resource-Access 
Synchronization 

• For cases in which multiple equivalent shared resources are 
used, a counting semaphore comes in handy. 

 

30 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



Multiple Shared-Resource-Access 
Synchronization.. 
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Points to Remember 

Some points to remember include the following:  

• Using semaphores allows multiple tasks, or ISRs to tasks, to 
synchronize execution to synchronize execution or 
coordinate mutually exclusive access to a shared resource.  

• Semaphores have an associated semaphore control block 
(SCB), a unique ID, a user-assigned value (binary or a count), 
and a task-waiting list.  

• Three common types of semaphores are binary, counting, 
and mutual exclusion (mutex), each of which can be 
acquired or released.  

• Binary semaphores are either available (1) or unavailable (0). 
Counting semaphores are also either available (count =1) or 
unavailable (0). Mutexes, however, are either unlocked (0) 
or locked (lock count =1).  
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Points to Remember.. 

• Acquiring a binary or counting semaphore results in decrementing 
its value or count, except when the semaphore’s value is already 
0. In this case, the requesting task blocks if it chooses to wait for 
the semaphore.  

• Releasing a binary or counting semaphore results in incrementing 
the value or count, unless it is a binary semaphore with a value of 
1 or a bounded semaphore at its maximum count. In this case, the 
release of additional semaphores is typically ignored.  

• Recursive mutexes can be locked and unlocked multiple times by 
the task that owns them. Acquiring an unlocked recursive mutex 
increments its lock count, while releasing it decrements the lock 
count.  

• Typical semaphore operations that kernels provide for application 
development include creating and deleting semaphores, acquiring 
and releasing semaphores, flushing semaphore’s task-waiting list, 
and providing dynamic access to semaphore information.  

 

33 

E
m

be
d
d
ed

 S
ys

. 
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7 

  ©
 A

hm
ad

 E
l-B

an
na

 



DESIGN TIPS 
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Digital Watch Design 
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Assignment#5 

• Design, implement and test a digital Thermestor, the watch 
should have the functions of: 

• Display the current temperature.  
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• For more details, refer to: 

• Chapter 6 at Real-time concepts for embedded systems, CMP 
Books, 2003 by  Qing Li and Carolyn Yao (ISBN:1578201241). 

• Chapter 5 at Embedded Software Development with C, 
Springer 2009 by Kai Qian et al. 

• Chapter 8,9,10 at Introduction to Embedded Systems, Springer 
2014 by  Manuel Jiménez et al. 

 

• The lecture is available online at: 

• http://bu.edu.eg/staff/ahmad.elbanna-courses 

 

• For inquires, send to: 

• ahmad.elbanna@feng.bu.edu.eg 
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